1,373 research outputs found

    Effects of Impedance Reduction of a Robot for Wrist Rehabilitation on Human Motor Strategies in Healthy Subjects during Pointing Tasks

    Get PDF
    Studies on human motor control demonstrated the existence of simplifying strategies (namely `Donders' law') adopted to deal with kinematically redundant motor tasks. In recent research we showed that Donders' law also holds for human wrist during pointing tasks, and that it is heavily perturbed when interacting with a highly back-drivable state-of-the-art rehabilitation robot. We hypothesized that this depends on the excessive mechanical impedance of the Pronation/Supination (PS) joint of the robot and in this work we analyzed the effects of its reduction. To this end we deployed a basic force control scheme, which minimizes human-robot interaction force. This resulted in a 70% reduction of the inertia in PS joint and in decrease of 81% and 78% of the interaction torques during 1-DOF and 3-DOFs tasks. To assess the effects on human motor strategies, pointing tasks were performed by three subjects with a lightweight handheld device, interacting with the robot using its standard PD control (setting impedance to zero) and with the force-controlled robot. We quantified Donders' law as 2-dimensional surfaces in the 3-dimensional configuration space of rotations. Results revealed that the subject-specific features of Donders' surfaces reappeared after the reduction of robot impedance obtained via the force control

    Inertial-Magnetic Sensors for Assessing Spatial Cognition in Infants

    Get PDF
    This paper describes a novel approach to the assessment of spatial cognition in children. In particular we present a wireless instrumented toy embedding magneto-inertial sensors for orientation tracking, specifically developed to assess the ability to insert objects into holes. To be used in naturalistic environments (e.g. daycares), we also describe an in-field calibration procedure based on a sequence of manual rotations, not relying on accurate motions or sophisticated equipment. The final accuracy of the proposed system, after the mentioned calibration procedure, is derived by direct comparison with a gold-standard motion tracking device. In particular, both systems are subjected to a sequence of ten single-axis rotations (approximately 90 deg, back and forth), about three different axes. The root-mean-square of the angular error between the two measurements (gold-standard vs. proposed systems) was evaluated for each trial. In particular, the average rms error is under 2 deg. This study indicates that a technological approach to ecological assessment of spatial cognition in infants is indeed feasible. As a consequence, prevention through screening of large number of infants is at reach

    A Complementary Filter Design on SE(3) to IdentifyMicro-Motions during 3D Motion Tracking

    Get PDF
    In 3D motion capture, multiple methods have been developed in order to optimize thequality of the captured data. While certain technologies, such as inertial measurement units (IMU),are mostly suitable for 3D orientation estimation at relatively high frequencies, other technologies,such as marker-based motion capture, are more suitable for 3D position estimations at a lower frequencyrange. In this work, we introduce a complementary filter that complements 3D motion capture datawith high-frequency acceleration signals from an IMU. While the local optimization reduces the error ofthe motion tracking, the additional accelerations can help to detect micro-motions that are useful whendealing with high-frequency human motions or robotic applications. The combination of high-frequencyaccelerometers improves the accuracy of the data and helps to overcome limitations in motion capturewhen micro-motions are not traceable with 3D motion tracking system. In our experimental evaluation,we demonstrate the improvements of the motion capture results during translational, rotational,and combined movements

    Using a Newly Developed Computer-Based Program to Evaluate Learning of Visuomotor Procedures in Children with Autism: A Pilot Study

    Get PDF
    Inspired by the recent literature, we designed a computer-based program that allows, with the aid of a digital tablet, to evaluate learning of visuomotor procedures, similar to the ones involved in handwriting. After extensive trials on children with typical development, we conducted a preliminary study to assess the effectiveness of this program in evaluating these abilities in children with ASD

    Development of goal-directed action selection guided by intrinsic motivations: an experiment with children

    Get PDF
    Action selection is extremely important, particularly when the accomplishment of competitive tasks may require access to limited motor resources. the spontaneous exploration of the world plays a fundamental role in the development of this capacity, providing subjects with an increasingly diverse set of opportunities to acquire, practice and refine the understanding of action-outcome connection. the computational modeling literature proposed a number of specific mechanisms for autonomous agents to discover and target interesting outcomes: intrinsic motivations hold a central importance among those mechanisms. Unfortunately, the study of the acquisition of action-outcome relation was mostly carried out with experiments involving extrinsic tasks, either based on rewards or on predefined task goals. this work presents a new experimental paradigm to study the effect of intrinsic motivation on action-outcome relation learning and action selection during free exploration of the world. three- and four-year-old children were observed during the free exploration of a new toy: half of them were allowed to develop the knowledge concerning its functioning; the other half were not allowed to learn anything. the knowledge acquired during the free exploration of the toy was subsequently assessed and compared

    Intermittent Theta Burst Stimulation Over Ventral Premotor Cortex or Inferior Parietal Lobule Does Not Enhance the Rubber Hand Illusion

    Get PDF
    An enhanced sense of prosthesis ownership may be the key for higher amputees’ quality of life. In this study in 28 healthy subjects, neuronavigated intermittent Theta Burst Stimulation (iTBS) delivered over the right ventral premotor cortex or inferior parietal lobule has been tested, compared to sham stimulation, to enhance embodiment in the rubber hand illusion paradigm. Neuromodulation of both areas did not result in an enhancement of embodiment, as assessed by the results collected from a self-evaluation questionnaire for the extent of self-attribution of the rubber hand and proprioceptive drift. In all cases, the difference between synchronous and asynchronous stroking confirms the successful induction of the illusion. It may be speculated that the low consistency of iTBS over brain regions other than primary motor cortex may account for the absence of effect, suggesting to test other neuromodulating techniques, acting on cortical networks different from the ones sensitive to iTBS to enhance artificial hand embodiment

    Exploration and learning in capuchin monkeys (Sapajus spp.): the role of action-outcome contingencies

    Get PDF
    Animals have a strong propensity to explore the environment. Spontaneous exploration has a great biological significance since it allows animals to discover and learn the relation between specific behaviours and their consequences. The role of the contingency between action and outcome for learning has been mainly investigated in instrumental learning settings and much less in free exploration contexts. We tested 16 capuchin monkeys (Sapajus spp.) with a mechatronic platform that allowed complex modules to be manipulated and to produce different outcomes. Experimental subjects could manipulate the modules and discover the contingencies between their own specific actions and the outcomes produced (i.e., the opening and lighting of a box). By contrast, Control subjects could operate on the modules, but the outcomes experienced were those performed by their paired Experimental subjects (\u27\u27yoked-control\u27\u27 paradigm). In the exploration phase, in which no food reward was present, Experimental subjects spent more time on the board and manipulated the modules more than Yoked subjects. Experimental subjects outperformed Yoked subjects in the following test phase, where success required recalling the effective action so to open the box, now baited with food. These findings demonstrate that the opportunity to experience action-outcome contingencies in the absence of extrinsic rewards promotes capuchins\u27 exploration and facilitates learning processes. Thus, this intrinsically motivated learning represents a powerful mechanism allowing the acquisition of skills and cognitive competence that the individual can later exploit for adaptive purposes
    • …
    corecore